Ch.8 Homomorphisms

Return to TOC

Homomorphisms

a homomorphism or linear map is a function that preserves addition and scalar multiplication
Note that an isomorphism is a bijective homomorphism

Example 8.1

The left is a homomorphism and the right is not:
(xy)h2x3y(xy)g2x3y+1\begin{array}{cc}\begin{pmatrix}x\\y\end{pmatrix}\xmapsto{h}2x-3y&\begin{pmatrix}x\\y\end{pmatrix}\xmapsto{g}2x-3y+1\end{array}
hh respects addition and scalar multiplication:
h((rx1+sx2ry1+sy2))=2(rx1+sx2)3(ry1+sy2)=r(2x13y1)+s(2x23y2)=rh((x1y1))+sh((x2y2))h(\begin{pmatrix}rx_1+sx_2\\ry_1+sy_2\end{pmatrix})=2(rx_1+sx_2)-3(ry_1+sy_2)\\=r(2x_1-3y_1)+s(2x_2-3y_2)=r\cdot h(\begin{pmatrix}x_1\\y_1\end{pmatrix})+s\cdot h(\begin{pmatrix}x_2\\y_2\end{pmatrix})
The right does not respect addition
g((x1+x2y1+y2))=2(x1+x2)3(y1+y2)+1g((x1y1))+g((x2y2))=2(x1+x2)3(y1+y2)+2g(\begin{pmatrix}x_1+x_2\\y_1+y_2\end{pmatrix})=2(x_1+x_2)-3(y_1+y_2)+1\\\ne g(\begin{pmatrix}x_1\\y_1\end{pmatrix})+g(\begin{pmatrix}x_2\\y_2\end{pmatrix})=2(x_1+x_2)-3(y_1+y_2)+2

A homomorphism sends the zero vector to the zero vector
The following are equivalent for a map f:VWf:V\to W between vector spaces. (c1,c2,...,cnR,v1,v2,...,vnVc_1,c_2,...,c_n\in\mathbb{R},\vec{v}_1,\vec{v}_2,...,\vec{v}_n\in V)

  1. ff is a homomorphism
  2. f(c1v1+c2v2)=c1f(v1)+c2f(v2)f(c_1\cdot\vec{v}_1+c_2\cdot\vec{v}_2)=c_1f(\vec{v}_1)+c_2f(\vec{v}_2)
  3. f(c1v1++cnvn)=c1f(v1)++cnf(vn)f(c_1\cdot\vec{v}_1+\cdots+c_n\cdot\vec{v}_n)=c_1f(\vec{v}_1)+\cdots+c_nf(\vec{v}_n)

(2) is most often used to show homomorphism

The inclusion mapι:R2R3\iota:\mathbb{R}^2\to\mathbb{R}^3
ι((xy))=(xy0)\iota(\begin{pmatrix}x\\y\end{pmatrix})=\begin{pmatrix}x\\y\\0\end{pmatrix}

Proof

ι((rx1+sx2ry1+sy2))=(rx1+sx2ry1+sy20)=r(x1y10)+s(x2y20)=rι((x1y1))+sι((x2y2))\iota(\begin{pmatrix}rx_1+sx_2\\ry_1+sy_2\end{pmatrix})=\begin{pmatrix}rx_1+sx_2\\ry_1+sy_2\\0\end{pmatrix}=r\begin{pmatrix}x_1\\y_1\\0\end{pmatrix}+s\begin{pmatrix}x_2\\y_2\\0\end{pmatrix}=r\cdot\iota(\begin{pmatrix}x_1\\y_1\end{pmatrix})+s\cdot\iota(\begin{pmatrix}x_2\\y_2\end{pmatrix})

The trace of an n×nn\times n square matrix Tr:Mn×nR\text{Tr}:\mathcal{M}_{n\times n}\to\mathbb{R} is the sum of the diagonal entries from the top left to bottom right, and is also a homomorphism
Tr((abcd))=a+d\text{Tr}(\begin{pmatrix}a&b\\c&d\end{pmatrix})=a+d

Proof

Tr((ra1+sa2rb1+sb2rc1+sc2rd1+sd2))=ra1+sa2+rd1+sd2=r(a1+d1)+s(a2+d2)=rTr((a1b1c1d1))+sTr((a2b2c2d2))\text{Tr}(\begin{pmatrix}ra_1+sa_2&rb_1+sb_2\\rc_1+sc_2&rd_1+sd_2\end{pmatrix})=ra_1+sa_2+rd_1+sd_2=r(a_1+d_1)+s(a_2+d_2)\\=r\cdot\text{Tr}(\begin{pmatrix}a_1&b_1\\c_1&d_1\end{pmatrix})+s\cdot\text{Tr}(\begin{pmatrix}a_2&b_2\\c_2&d_2\end{pmatrix})


Let B=β1,...,βnB=\langle\vec{\beta}_1,...,\vec{\beta}_n\rangle be a basis or vector space VV. A function f:BWf:B\to W can be extended linearly to a function f^:VW\hat{f}:V\to W if for all v=c1β1++cnβnV\vec{v}=c_1\vec{\beta}_1+\cdots+c_n\vec{\beta}_n\in V, the action of the map is f^(v)=c1f(β1)++cnf(βn)\hat{f}(\vec{v})=c_1\cdot f(\vec{\beta}_1)+\cdots+c_n\cdot f(\vec{\beta}_n)

Example 8.2

Suppose we want a rotation map tθ:R2R2t_\theta:\mathbb{R}^2\to\mathbb{R}^2 rotating all vectors in the plane by θ\theta. We can take a basis of the domain, say E2\mathcal{E}_2 and find where they map to:
(10)(cosθsinθ)(01)(sinθcosθ)\begin{array}{cc}\begin{pmatrix}1\\0\end{pmatrix}\mapsto\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}&\begin{pmatrix}0\\1\end{pmatrix}\mapsto\begin{pmatrix}-\sin\theta\\\cos\theta\end{pmatrix}\end{array}
This can therefore be linearly extended to:
tθ((xy))=x(cosθsinθ)+y(sinθcosθ)=(xcosθysinθxsinθ+ycosθ)t_\theta(\begin{pmatrix}x\\y\end{pmatrix})=x\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}+y\cdot\begin{pmatrix}-\sin\theta\\\cos\theta\end{pmatrix}=\begin{pmatrix}x\cos\theta-y\sin\theta\\x\sin\theta+y\cos\theta\end{pmatrix}

Define the evaluation mapeval3:P2R\text{eval}_3:\mathcal{P}_2\to\mathbb{R} by specifying an action on the basis of quadratic polynomials B=x2,x,1B=\langle x^2,x,1\rangle
x2eval39xeval331eval31\begin{array}{ccc}x^2\xmapsto{\text{eval}_3}9&x\xmapsto{\text{eval}_3}3&1\xmapsto{\text{eval}_3}1\end{array}
then extending linearly:
eval3(ax2+bx+c)=9a+3b+c\text{eval}_3(ax^2+bx+c)=9a+3b+c
We see eval3(p(x))\text{eval}_3(p(x)) is equivalent to p(3)p(3)


Linear Transformation

A linear transformation is a linear map from a space to itself t:VVt:V\to V
For example, the identity map id:VV\text{id}:V\to V maps vv\vec{v}\mapsto\vec{v} (easy to check)

L(V,W)\mathcal{L}(V,W) denotes the set of linear functions from VV to WW, and is a subspace of the set of all functions from VV to WW

Proof

The set is nonempty because it contains the zero homomorphism Z:VWZ:V\to W, Z(v)=0WZ(\vec{v})=\vec{0}_W. To show it is a subspace it suffices to show it is closed under addition and scalar multiplication.
Let f,g:VWf,g:V\to W be linear functions. Then
(f+g)(c1v1+c2v2)=f(c1v1+c2v2)+g(c1v1+c2v2)=c1f(v1)+c2f(v2)+c1g(v1)+c2g(v2)=c1(f+g)(v1)+c2(f+g)(v2)\begin{array}{lcl}(f+g)(c_1\vec{v}_1+c_2\vec{v}_2)&=&f(c_1\vec{v}_1+c_2\vec{v}_2)+g(c_1\vec{v}_1+c_2\vec{v}_2)\\&=&c_1f(\vec{v}_1)+c_2f(\vec{v}_2)+c_1g(\vec{v}_1)+c_2g(\vec{v}_2)\\&=&c_1(f+g)(\vec{v}_1)+c_2(f+g)(\vec{v}_2)\end{array}
so addition is preserved and since
(rf)(c1v1+c2v2)=r(c1f(v1)+c2f(v2))=c1(rf)(v1)+c2(rf)(v2)\begin{array}{lcl}(r\cdot f)(c_1\vec{v}_1+c_2\vec{v}_2)&=&r(c_1f(\vec{v}_1)+c_2f(\vec{v}_2))\\&=&c_1(r\cdot f)(\vec{v}_1)+c_2(r\cdot f)(\vec{v}_2)\end{array}
scalar multiplication is preserved. Hence, this space is a subspace.

Thus, we only need consider the action on the basis of VV and WW.

Example 8.3

Consider L(R,R2)\mathcal{L}(\mathbb{R},\mathbb{R}^2). A linear map in this space tL(R,R2)t\in\mathcal{L}(\mathbb{R},\mathbb{R}^2) is determined by its action on the basis
BR=1BR2=(10),(01)\begin{array}{cc}B_\mathbb{R}=1&B_{\mathbb{R}^2}=\langle\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\rangle\end{array}
So every function is determined by c1,c2c_1,c_2 here:
1tc1(10)+c2(01)1\xmapsto{t}c_1\begin{pmatrix}1\\0\end{pmatrix}+c_2\begin{pmatrix}0\\1\end{pmatrix}
Thus L(R,R2)\mathcal{L}(\mathbb{R},\mathbb{R}^2) is a 2-dimensional vector space.


Range Space

Let h:VWh:V\to W be a homomorphism. Then the image of a subspace SS of VV is a subspace of WW.

Proof

Let h(S)h(S) be the image of subspace SS. It is nonempty because SS is nonempty. It suffices to show h(S)h(S) is closed under addition and scalar multiplication. For c1,c2Rc_1,c_2\in\mathbb{R} and h(s1),h(s2)h(S)h(\vec{s}_1),h(\vec{s}_2)\in h(S)
c1h(s1)+c2h(s2)=h(c1s1+c2s2)h(S)c_1h(\vec{s}_1)+c_2h(\vec{s}_2)=h(c_1\vec{s}_1+c_2\vec{s}_2)\in h(S)
because it is the image of c1s+c2s2Sc_1\vec{s}+c_2\vec{s}_2\in S.

The range space of a homomorphism h:VWh:V\to W is
R(h)=h(V)={h(v)  vV}\mathscr{R}(h)=h(V)=\{h(\vec{v})\space|\space\vec{v}\in V\}
The dimension of the range space is the rank

Example 8.4

Consider the linear map h:M2×2R2h:\mathcal{M}_{2\times2}\to\mathbb{R}^2
(1bcd)h(a+b2a+2b)\begin{pmatrix}1&b\\c&d\end{pmatrix}\xmapsto{h}\begin{pmatrix}a+b\\2a+2b\end{pmatrix}
The range space is the line through the origin
{t(12)  tR}\{t\begin{pmatrix}1\\2\end{pmatrix}\space|\space t\in\mathbb{R}\}
Every member of that set is the image of a 2×22\times2 matrix
(t2t)=h((t000))\begin{pmatrix}t\\2t\end{pmatrix}=h(\begin{pmatrix}t&0\\0&0\end{pmatrix})
The space is one dimensional, so the rank is 1.

Example 8.5

The projection map π:R3R2\pi:\mathbb{R}^3\to\mathbb{R}^2
(xyz)π(xy)\begin{pmatrix}x\\y\\z\end{pmatrix}\xmapsto{\pi}\begin{pmatrix}x\\y\end{pmatrix}
has the range space
{t(10)+s(01)  t,sR}\{t\begin{pmatrix}1\\0\end{pmatrix}+s\begin{pmatrix}0\\1\end{pmatrix}\space|\space t,s\in\mathbb{R}\}

Homomorphisms are like isomorphisms except the maps need not be bijective. Dropping the onto condition has no effect, since any map h:VWh:V\to W are already onto R(h)\mathscr{R}(h).
But dropping the one-to-one condition means we can have multiple vV\vec{v}\in V that make h(v)=wh(\vec{v})=\vec{w} for wW\vec{w}\in W.
In other words, the inverse imageh1(w)={v  h(vW)=w}h^{-1}(\vec{w})=\{\vec{v}\space|\space h(\vec{v}\in W)=\vec{w}\} can have multiple elements.

Example 8.6

Consider the linear projection map π:R2R\pi:\mathbb{R}^2\to\mathbb{R}
π((xy))=x\pi(\begin{pmatrix}x\\y\end{pmatrix})=x
The inverse image π1(c)\pi^{-1}(c) is a set of vectors ((cy)  yR2)(\begin{pmatrix}c\\y\end{pmatrix}\space|\space y\in\mathbb{R}^2)
The endpoints make up the line x=cx=c

Homomorphisms organize the domain into inverse images that reflects the structure of the range. The linear properties are still preserved.
Example 8.7

Let h:P2R2h:\mathcal{P}_2\to\mathbb{R}^2 be
ax2+bx+c(bb)ax^2+bx+c\mapsto\begin{pmatrix}b\\b\end{pmatrix}
Consider three output vectors such that w1+w2=w3\vec{w}_1+\vec{w}_2=\vec{w}_3, for example
w1=(11)w2=(11)w3=(00)\begin{array}{ccc}\vec{w}_1=\begin{pmatrix}1\\1\end{pmatrix}&\vec{w}_2=\begin{pmatrix}-1\\-1\end{pmatrix}&\vec{w}_3=\begin{pmatrix}0\\0\end{pmatrix}\end{array}
The inverse images are respectively
h1(w1)={a1x2+1x+c1  a1,c1R}h1(w2)={a2x21x+c2  a2,c2R}h1(w3)={a3x2+0x+c3  a3,c3R}h^{-1}(\vec{w}_1)=\{a_1x^2+1x+c_1\space|\space a_1,c_1\in\mathbb{R}\}\\ h^{-1}(\vec{w}_2)=\{a_2x^2-1x+c_2\space|\space a_2,c_2\in\mathbb{R}\}\\ h^{-1}(\vec{w}_3)=\{a_3x^2+0x+c_3\space|\space a_3,c_3\in\mathbb{R}\}
Since this is a homomorphism, we can take any v1h1(w1)\vec{v}_1\in h^{-1}(\vec{w}_1) and add it to v2h1(w2)\vec{v}_2\in h^{-1}(\vec{w}_2) to get an element v3h1(w3)\vec{v}_3\in h^{-1}(\vec{w}_3)


Null space

Each of the elements of the inverse images are just shifted, so consider h1(0)h^{-1}(\vec{0})
The null space or kernel of a linear map h:VWh:V\to W is the inverse image of 0W\vec{0}_W
Ker(h)=N(h)=h1(0W)={vV  h(v)=0W}\text{Ker}(h)=\mathscr{N}(h)=h^{-1}(\vec{0}_W)=\{\vec{v}\in V\space|\space h(\vec{v})=\vec{0}_W\}
The dimension of the null space is the nullity

Note

The trivial subspace of WW is the set{0W}\{\vec{0}_W\}, not just vW\vec{v}_W, so we may write the null space as h1({0W})h^{-1}(\{\vec{0}_W\}), however we have defined this to be equivalent to h1(0W)h^{-1}(\vec{0}_W) and that's easier to write so we just use that.

Example 8.8

Consider the derivative map d/dx:P2P1d/dx:\mathcal{P}_2\to\mathcal{P}_1. The nullspace is a subset of the domain
N(d/dx)={ax2+bx+c  2a+b=0}\mathscr{N}(d/dx)=\{ax^2+bx+c\space|\space 2a+b=0\}
2a+b=0x+02a+b=0x+0 iff a=b=0a=b=0, which means the nullspace is equal to
N(d/dx)={ax2+bx+c  a=b=0,cR}={c  cR}\mathscr{N}(d/dx)=\{ax^2+bx+c\space|\space a=b=0,c\in\mathbb{R}\}=\{c\space|\space c\in\mathbb{R}\}
The nullity is 1.

Example 8.9

Consider the homomorphism f:M2×2R2f:\mathcal{M}_{2\times2}\to\mathbb{R}^2
f((abcd))=(a+bc+d)f(\begin{pmatrix}a&b\\c&d\end{pmatrix})=\begin{pmatrix}a+b\\c+d\end{pmatrix}
The nullspace is
N(f)={(abcd) | a+b=0 and c+d=0}={(aabb) | a,bR}\begin{array}{rcl}\mathscr{N}(f)&=&\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\space\middle|\space a+b=0\text{ and }c+d=0\right\}\\\\&=&\left\{\begin{pmatrix}a&-a\\b&-b\end{pmatrix}\space\middle|\space a,b\in\mathbb{R}\right\}\end{array}
The nullity is 2.


Rank Plus Nullity

A linear map's rank plus its nullity equals the dimension of the domain

Proof

Let h:VWh:V\to W be a linear map and let BN=β1,...,βkB_N=\langle\textcolor{#EE4266}{\vec{\beta}_1},...,\textcolor{#EE4266}{\vec{\beta}_k}\rangle be the basis for the null space. The size of this is the nullity. Since the nullspace is a subspace, the basis BNB_N can be expanded to a basis BV=β1,...,βk,βk+1,...,βnB_V=\langle\textcolor{#EE4266}{\vec{\beta}_1},...,\textcolor{#EE4266}{\vec{\beta}_k},\textcolor{#F79256}{\vec{\beta}_{k+1}},...,\textcolor{#F79256}{\vec{\beta}_n}\rangle for the domain VV. The size of BVB_V is the dimension of the domain. We will show that BR=h(βk+1),...,h(βn)B_R=\langle h(\textcolor{#F79256}{\vec{\beta}_{k+1}}),...,h(\textcolor{#F79256}{\vec{\beta}_n})\rangle is the basis of the range space.

First we check that BRB_R is linearly independent.
0W=ck+1h(βk+1)++cnh(βn)=h(ck+1βk+1++cnh(βn))\begin{array}{rcl}\vec{0}_W&=&c_{k+1}h(\vec{\beta}_{k+1})+\cdots+c_nh(\vec{\beta}_n)\\&=&h(c_{k+1}\vec{\beta}_{k+1}+\cdots+c_nh(\vec{\beta}_n))\end{array}
Thus ck+1βk+1++cnβnc_{k+1}\vec{\beta}_{k+1}+\cdots+c_n\vec{\beta}_n is in the nullspace of hh. Therefore, we can express it as a linear combination of BNB_N
c1β1++ckβk=ck+1βk+1++cnβnc_1\vec{\beta}_1+\cdots+c_k\vec{\beta}_k=c_{k+1}\vec{\beta}_{k+1}+\cdots+c_n\vec{\beta}_n
Letting ci=cic'_i=-c_i for i=k+1,...,ni=k+1,...,n, this can be rearranged to
c1β1++ckβk+ck+1βk+1++cnβn=0c_1\vec{\beta}_1+\cdots+c_k\vec{\beta}_k+c'_{k+1}\vec{\beta}_{k+1}+\cdots+c'_n\vec{\beta}_n=\vec{0}
This is a linear combination of BVB_V, which means the only solution is ci=0c_i=0 for i=1,...,ni=1,...,n. Therefore, BRB_R is linearly independent.

Next, we show that BRB_R spans the range space.
Consider a member of the range space h(v)h(\vec{v}).
Express v\vec{v} as a linear combination of members of BVB_V and apply the map:
v=c1β1++ckβk+ck+1βk+1++cnβnh(v)=c1h(β1)++ckh(βk)+ck+1h(βk+1)++cnh(βn)\vec{v}=c_1\vec{\beta}_1+\cdots+c_k\vec{\beta}_k+c_{k+1}\vec{\beta}_{k+1}+\cdots+c_n\vec{\beta}_n\\ h(\vec{v})=c_1h(\vec{\beta}_1)+\cdots+c_kh(\vec{\beta}_k)+c_{k+1}h(\vec{\beta}_{k+1})+\cdots+c_nh(\vec{\beta}_n)
Since β1,...,βk\vec{\beta}_1,...,\vec{\beta}_k are in the nullspace, h(β1),...,h(βk)=0h(\vec{\beta}_1),...,h(\vec{\beta}_k)=0, so
h(v)=0+ck+1βk+1++cnβnh(\vec{v})=\vec{0}+c_{k+1}\vec{\beta}_{k+1}+\cdots+c_n\vec{\beta}_n
Thus, we have h(v)h(\vec{v}) as a linear combination of members of BRB_R, so BRB_R spans the range space.

Example 8.10

The projection π:R3R2\pi:\mathbb{R}^3\to\mathbb{R}^2
(abc)(ab)\begin{pmatrix}a\\b\\c\end{pmatrix}\mapsto\begin{pmatrix}a\\b\end{pmatrix}
takes a 3 dimensional domain to a 2 dimensional range, so the nullspace is 1 dimensional, i.e. the z-axis

Under a linear map, the image of a linearly dependent set is linearly dependent.

Proof

Suppose c1v1++cnvn=0Vc_1\vec{v}_1+\cdots+c_n\vec{v}_n=\vec{0}_V with some ci0c_i\ne0.
Apply hh to both sides: h(c1v1++cnvn)=c1h(v1)++cnh(vn)h(c_1\vec{v}_1+\cdots+c_n\vec{v}_n)=c_1h(\vec{v}_1)+\cdots+c_nh(\vec{v}_n) and h(0V)=0Wh(\vec{0}_V)=\vec{0}_W.
So we have c1h(v1)++cnh(vn)=0Wc_1h(\vec{v}_1)+\cdots+c_nh(\vec{v}_n)=\vec{0}_W with some ci0c_i\ne0


One-to-One Homomorphisms

For a nn-dimensional vector space VV, the following statements are equivalent about h:VWh:V\to W

  1. hh is one-to-one
  2. hh has an inverse from its range to its domain that is a linear map
  3. N(h)={0}\mathscr{N}(h)=\{\vec{0}\}, i.e. nullity(h)=0\text{nullity}(h)=0
  4. rank(h)=n\text{rank}(h)=n
  5. if β1,...,βn\langle\vec{\beta}_1,...,\vec{\beta}_n\rangle is a basis for VV then h(β1),...,h(βn)\langle h(\vec{\beta}_1),...,h(\vec{\beta}_n)\rangle is a basis for R(h)\mathscr{R}(h)
Proof

First, we prove (1)(2)(1)\implies(2)
Suppose hh is one-to-one. It must have an inverse h1:R(h)Vh^{-1}:\mathscr{R}(h)\to V. Taking a linear combination of two elements of R(h)\mathscr{R}(h), we have c1h(v1)+c2h(v2)c_1h(\vec{v}_1)+c_2h(\vec{v}_2). Taking the inverse:
h1(c1h(v1)+c2h(v2))=h1(h(c1v1+c2v2))=c1v1+c2v2=c1h1(h(v1))+c2h1(h(v2))\begin{array}{rcl}h^{-1}(c_1h(\vec{v}_1)+c_2h(\vec{v}_2))&=&h^{-1}(h(c_1\vec{v}_1+c_2\vec{v}_2))\\&=&c_1\vec{v}_1+c_2\vec{v}_2\\&=&c_1h^{-1}(h(\vec{v}_1))+c_2h^{-1}(h(\vec{v}_2))\end{array}
Thus h1h^{-1} is a linear map.
(2)(1)(2)\implies(1) because hh is a bijection from VV to R(h)\mathscr{R}(h).

It remains to show that (1)(3)(4)(5)(2)(1)\implies(3)\implies(4)\implies(5)\implies(2)
(1)(3)(1)\implies(3) because any homomorphism maps 0V\vec{0}_V to 0W\vec{0}_W, but if hh is one-to-one, only0V\vec{0}_V maps to 0W\vec{0}_W.
For (3)(4)(3)\implies(4), since rank plus nullity equals dimension and nulltiy is 0, rank must equal dimension, i.e. rank(h)=n\text{rank}(h)=n
For (4)(5)(4)\implies(5), we must show that h(β1),...,h(βn)\langle h(\vec{\beta}_1),...,h(\vec{\beta}_n)\rangle spans the range space, since by assumption the dimension is nn, implying these are linearly independent.
Consider h(v)R(h)h(\vec{v})\in\mathscr{R}(h). Expressing v\vec{v} in terms of the basis of VV gives h(v)=h(c1β1++cnβn)=c1h(β1)++cnh(βn)h(\vec{v})=h(c_1\vec{\beta}_1+\cdots+c_n\vec{\beta}_n)=c_1h(\vec{\beta}_1)+\cdots+c_nh(\vec{\beta}_n) as desired.
Finally for (5)(2)(5)\implies(2), for every wR(h)\vec{w}\in\mathscr{R}(h), there is a unique representation w=c1h(β1)++cnh(βn)\vec{w}=c_1h(\vec{\beta}_1)+\cdots+c_nh(\vec{\beta}_n). Define a map from R(h)\mathscr{R}(h) to VV by
wc1β1++cnβn\vec{w}\mapsto c_1\vec{\beta}_1+\cdots+c_n\vec{\beta}_n
This is linear and is the inverse of hh as desired.


Transformations of R2\mathbb{R}^2

Lines through the origin map to lines through the origin under a homomorphism

Explanation

A line through the origin is a set {rv  rR}\{r\cdot\vec{v}\space|\space r\in\mathbb{R}\}
Under a linear transformation t:RnRnt:\mathbb{R}^n\to\mathbb{R}^n
rvtt(rv)=rt(v)r\cdot\vec{v}\xmapsto{t} t(r\cdot\vec{v})=r\cdot t(\vec{v})
So the range space is {st(v)  sR}\{s\cdot t(\vec{v})\space|\space s\in\mathbb{R}\}, a line through the origin

A map has twice the effect on 2v2\vec{v}, three times the effect on 3v3\vec{v}, nn times the effect on nvn\cdot\vec{v}

Any vector in the plane is in some line through the origin, so we only need to understand what a transformation t:R2R2t:\mathbb{R}^2\to\mathbb{R}^2 does to a line through the origin. But from above, we only need to understand what it does to a single nonzero vector in the line.
A natural set of one nonzero vector through every line is the upper half unit circle

A vector in the set {(xy)=(cos(t)sin(t))  0t<π}\left\{\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\cos(t)\\\sin(t)\end{pmatrix}\space|\space 0\le t<\pi\right\} can be dilated, translated, and rotated to any other vector with a predictable effect under tt